The polynomial method in Galois geometries

Leo Storme

Ghent University Dept. of Mathematics Krijgslaan 281 - Building S22 9000 Ghent Belgium

Lille, June 25, 2013

1. Affine spaces

2. Projective spaces

OUTLINE

- I. Affine spaces
- 2. Projective spaces

2 BLOCKING SETS

- Linear blocking set
- Multiple blocking sets in PG(2, q)
- Multiple blocking sets and algebraic curves
- Characterization result

1. Affine spaces 2. Projective spaces

FINITE FIELDS

- q = prime number.
 - Prime fields $\mathbb{F}_q = \{0, 1, \dots, q-1\} \pmod{q}$.
 - Binary field $\mathbb{F}_2 = \{0, 1\}$.
 - Ternary field $\mathbb{F}_3 = \{0,1,2\} = \{-1,0,1\}.$
- Finite fields \mathbb{F}_q : *q* prime power.

<ロ> <同> <同> <同> < 同> < 同>

1. Affine spaces 2. Projective spaces

Affine space AG(n, q)

- V(n,q) = n-dimensional vector space over \mathbb{F}_q .
- AG(n,q) = V(n,q) plus parallelism.
- k-dimensional affine subspace = (translate) of k-dimensional vector space.

1. Affine spaces 2. Projective spaces

PARALLELISM IN AFFINE SPACE AG(n, q)

- Let Π_k be *k*-dimensional vector space of V(n, q).
- $\Pi_k + b$, for $b \in V(n, q)$, are the affine *k*-subspaces *parallel* to Π_k .
- Two parallel affine *k*-subspaces are disjoint or equal.
- Parallelism leads to partitions of AG(*n*, *q*) into (parallel) affine *k*-subspaces.

1. Affine spaces 2. Projective spaces

Affine plane AG(2,3) of order 3

Leo Storme Polynomial method in Galois geometries

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

1. Affine spaces

2. Projective spaces

From V(3, q) to PG(2, q)

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

UNIVERSITER

æ

1. Affine spaces

2. Projective spaces

From V(3, q) to PG(2, q)

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

1. Affine spaces

2. Projective spaces

THE FANO PLANE PG(2, 2)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

1. Affine spaces

2. Projective spaces

The plane PG(2,3)

э

Leo Storme Poly

Polynomial method in Galois geometries

ヘロン 人間 とくほど 人間と

1. Affine spaces

2. Projective spaces

From V(4, q) to PG(3, q)

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

UNIVERSITER

æ

1. Affine spaces

2. Projective spaces

From V(4, q) to PG(3, q)

æ

Leo Storme Polynomial method in Galois geometries

1. Affine spaces

2. Projective spaces

PG(3, 2)

э

・ロト ・ 四ト ・ ヨト ・ ヨト

1. Affine spaces

2. Projective spaces

From V(n+1,q) to PG(n,q)

- From V(1, q) to PG(0, q) (projective point),
- Solution From V(2, q) to PG(1, q) (projective line),
- 3 ...
- From V(i + 1, q) to PG(i, q) (i-dimensional projective subspace),
- **5** ...
- From V(n,q) to PG(n-1,q) ((n-1)-dimensional subspace = hyperplane),
- From V(n+1,q) to PG(n,q) (*n*-dimensional space).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

1. Affine spaces

2. Projective spaces

LINK BETWEEN AFFINE AND PROJECTIVE SPACES

• AG(*n*, *q*) = PG(*n*, *q*) minus one hyperplane (the hyperplane at infinity).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

1. Affine spaces

2. Projective spaces

LINK BETWEEN AG(2,3) and PG(2,3)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Linear blocking sets Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

OUTLINE

- I. Affine spaces
- 2. Projective spaces

2 BLOCKING SETS

- Linear blocking set
- Multiple blocking sets in PG(2, q)
- Multiple blocking sets and algebraic curves
- Characterization result

(日) (四) (三) (三)

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

DEFINITION AND EXAMPLE

DEFINITION

Blocking set B in PG(2, q) is set of points, intersecting every line in at least one point.

EXAMPLE

Line L in PG(2, q).

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

EXAMPLE

Leo Storme Polynomial method in Galois geometries

UNIVERSITE

< ≣ > < ≣ >

Linear blocking sets Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

DEFINITION

DEFINITION

Point *r* of blocking set *B* in PG(2, *q*) is *essential* if $B \setminus \{r\}$ is no longer blocking set.

DEFINITION

Blocking set *B* is *minimal* if all of its points are essential.

EXAMPLE

Line L of PG(2, q) is minimal blocking set B of size q + 1.

Linear blocking sets Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

Non-trivial blocking set in PG(2, q)

DEFINITION

Non-trivial blocking set *B* in PG(2, q) does not contain a line.

Example: Baer subplane $PG(2, \sqrt{q})$ in PG(2, q), *q* square.

Notation: q + r(q) + 1 = size of smallest non-trivial blocking set in PG(2, *q*).

- (Blokhuis) r(q) = (q + 1)/2 for q > 2 prime,
- (Bruen) $r(q) = \sqrt{q}$ for q square,
- (Blokhuis) $r(q) = q^{2/3}$ for q cube power.

LINEAR BLOCKING SET

- Consider PG(2, q), $q = p^h$, p prime, $h \ge 1$.
- \mathbb{F}_q has \mathbb{F}_{p^e} , e|h, as subfield.
- PG(h/e, p^e) is naturally embedded subgeometry of PG(h/e, q).
- Project $PG(h/e, p^e)$ onto plane PG(2, q).
- Projection *B* is (linear) blocking set of PG(2, *q*).

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

Leo Storme Polynomial method in Galois geometries

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

PARTICULAR PROPERTIES OF LINEAR BLOCKING SETS

- Line intersects B in 1 (mod p^e) points.
- If line *L* shares $1 + p^e$ points with *B*, then $L \cap B = PG(1, p^e)$.

THEOREM (SZIKLAI AND SZŐNYI)

Let B be minimal blocking set in PG(2, q), $q = p^h$, p prime, $h \ge 1$, with |B| < q + (q + 3)/2. Then

- *B* intersects every line in 1 (mod p^e) points, for some e|h,
- If e is the maximal integer with this property, then e|h, and if line L shares 1 + p^e points with B, then L ∩ B = PG(1, p^e).

Linear blocking set **Multiple blocking sets in PG**(2, q) Multiple blocking sets and algebraic curves Characterization result

DEFINITIONS

DEFINITION

- t-Fold blocking set B in PG(2, q): intersects every line in at least t points.
- Minimal *t*-fold blocking set: no proper subset is still *t*-fold blocking set.

EXAMPLES

- Union of *t* pairwise disjoint Baer subplanes $PG(2, \sqrt{q})$ in PG(2, q), *q* square.
- (Polverino and Storme) Union of disjoint Baer subplane $PG(2, \sqrt{q})$ and projected subgeometry $PG(3, q^{1/3})$ in PG(2, q), when q is 6-th power.
- Union of two disjoint linear non-trivial blocking sets.

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

SETTING FOR RÉDEI-POLYNOMIAL

- B = t-fold blocking set in PG(2, q) of size t(q + 1) + c, with t + c < q.
- P point of B.
- Line $\ell = t$ -secant of *B* through *P*.
- Homogeneous coordinates (X : Y : Z) such that

•
$$P = (0:1:0) = (\infty),$$

•
$$\ell: Z = 0$$
,

• $B \cap \ell = \{(1:-y_j:0) | | j = 1, \dots, t-1\} \cup \{(0:1:0)\}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

RÉDEI-POLYNOMIAL

۲

٥

• \mathcal{A} = affine plane PG(2, q) \ ℓ , such that (x, y) = (x : y : 1),

$$B \cap \mathcal{A} = \{(a_i, b_i) | | i = 1, \dots, tq + c\}.$$

$$F(U, V) = \prod_{j=1}^{t-1} (V + y_j) \prod_{i=1}^{tq+c} (U + a_i V + b_i).$$

(Rédei-polynomial)

 $F(U, V) = \sum_{i=0}^{t} F_i(U, V)(U^q - U)^{t-i}(V^q - V)^i,$

where $\deg(F_i) \leq \deg(F) - qt$.

RÉDEI-POLYNOMIAL

• Homogeneous part of largest degree and substitute V = 1,

$$f(U) := \prod_{i=1}^{tq+c} (U+a_i) = \sum_{i=0}^t f_i(U) U^{q(t-i)},$$

where $f_i(U) = F_{i0}(U, 1)$, and where F_{i0} is homogeneous part of $F_i(U, V)$ of highest degree.

- Since B is t-fold blocking set, f contains factor U + y at least t − 1 times, for all y ∈ F_q.
- So *f* is divisible by $(U^q U)^{t-1}$. Dividing by $(U^q U)^{t-1}$, we obtain *excess polynomial*

$$ex(U) = U^q f_0(U) + f_1(U) + (t-1)Uf_0(U).$$

RÉDEI POLYNOMIAL

Excess polynomial

$$ex(U) = U^q f_0(U) + f_1(U) + (t-1)Uf_0(U)$$

contains information about lines through P having more than t points of B.

DEFINITION

Let ex(U) be excess polynomial of *P*. Let $q = p^n$, *p* prime. Let $d(U) = gcd(f_0(U), f_1(U))$. If *e* is largest integer for which ex(U)/d(U) is p^e -th power, then *e* is called *exponent* of *P*.

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

RÉDEI POLYNOMIAL

Notation: deg(f) = f° .

THEOREM (BLOKHUIS, STORME, SZŐNYI)

Let $f \in \mathbb{F}_q[X]$, $q = p^n$, p prime, be fully reducible, $f(X) = X^q h(X) + g(X)$, where gcd(g, h) = 1. Let $k = max(g^\circ, h^\circ) < q$. Let e be maximal such that f is p^e -th power. Then:

RÉDEI POLYNOMIAL

THEOREM (BLOKHUIS, STORME, SZŐNYI)

(1)
$$e = n$$
 and $k = 0$;

(2)
$$e \ge 2n/3$$
 and $k \ge p^e$;

(3)
$$2n/3 > e > n/2$$
 and $k \ge p^{n-e/2} - (3/2)p^{n-e}$;

(4)
$$e = n/2$$
 and $k = p^e$ and $f(X) = aTr(bX + c) + d$ or
 $f(X) = aNorm(bX + c) + d$ for suitable constants a, b, c, d .

(5)
$$e = n/2$$
 and $k \ge p^e \left[\frac{1}{4} + \sqrt{(p^e + 1)/2}\right]$;

(6)
$$n/2 > e > n/3$$
 and $k \ge p^{n/2+e/2} - p^{n-e} - p^e/2$, or if $3e = n + 1$ and $p \le 3$, then $k \ge p^e(p^e + 1)/2$;

(7)
$$n/3 \ge e > 0$$
 and $k \ge p^e \lceil (p^{n-e} + 1)/(p^e + 1) \rceil$;

(8)
$$e = 0$$
 and $k \ge (q + 1)/2$;

(9)
$$e = 0, k = 1$$
 and $f(X) = a(X^q - X)$

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

IMPORTANT LEMMAS

Lemma

Let B be minimal t-fold blocking set, |B| = t(q + 1) + c and let $P \in B$. Then at least q - c lines through P intersect B in exactly t points.

Proof:

- Let P = (0 : 1 : 0) and denote by *e* the exponent of *P*.
- $\operatorname{ex}(U) = U^q h(U) + g(U)$, with $h^\circ, g^\circ \leq c$.
- Let $d(U) = \gcd(h(U), g(U))$, then $\exp(U)/d(U) = (U^{q/p^e}h_1(U) + g_1(U))^{p^e}$.
- Number of lines that are not *t*-secants is at most *c* + 1.

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

IMPORTANT LEMMA

Lemma

Let B be minimal t-fold blocking set of PG(2, q) of size tq + t + c. Let P be point of exponent e. Then

- (1) P lies on at least $2 + (q c)/p^e$ lines meeting B in at least $p^e + t$ points;
- (2) P lies on at least $(q 3c)/p^e + 4$ distinct $(p^e + t)$ -secants to B.

Linear blocking set **Multiple blocking sets in PG**(2, q) Multiple blocking sets and algebraic curves Characterization result

Proof:

- Assume d(U) = 1.
- $ex(U) = (e_1(U))^{p^e} = (U^{q/p^e}h_1(U) + g_1(U))^{p^e}$, with $g_1^{\circ}, h_1^{\circ} \le c/p^e$.
- Then $gcd(e_1(U), e'_1(U))$ divides $g_1(U)h'_1(U) g'_1(U)h_1(U)$, and contains contribution of multiple roots of e_1 .
- $\deg(g_1(U)h_1'(U) g_1'(U)h_1(U)) \le 2c/p^e 2.$
- So, e₁(U) has at least (q c)/p^e + 2 distinct roots. At most 2c/p^e 2 of them can be multiple roots, hence e₁(U) has at least (q 3c)/p^e + 4 simple roots.

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

SETTING FOR ALGEBRAIC CURVES

- B = t-fold blocking set with |B| = tq + t + c, with c + t < (q + 3)/2.
- Exponent of any point in B is e > 0.
- (so, intuitively, every line intersects B in $t \pmod{p^e}$ points)

DEFINITION

Let ex(U) be excess polynomial of *P*. Let $q = p^n$, *p* prime. Let $d(U) = gcd(f_0(U), f_1(U))$. If *e* is largest integer for which ex(U)/d(U) is p^e -th power, then *e* is called *exponent* of *P*.

Linear blocking set Multiple blocking sets in $\mathrm{PG}(2,q)$ Multiple blocking sets and algebraic curves Characterization result

SETTING FOR ALGEBRAIC CURVES

$$F(U, V) = \prod_{j=1}^{t-1} (V + y_j) \prod_{i=1}^{tq+c} (U + a_i V + b_i).$$

$$F(U, V) = (U^{q} - U)^{t} F_{0}(U, V) + (U^{q} - U)^{t-1} (V^{q} - V) F_{1}(U, V) + \dots + (V^{q} - V)^{t} F_{t}(U, V),$$

where deg(F_{i}) $\leq c + t - 1$.

・ロト ・四ト ・ヨト ・ヨト

VIVERSITE

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

USEFUL LEMMAS

Lemma

If line Y = -mX - b intersects $B \cap A$ in more than t points, then $F_0(b, m) = \ldots = F_t(b, m) = 0$.

Lemma

 F_0, \ldots, F_t have no common divisor, dependent on U.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

THEOREM

Theorem

t-Fold blocking set B in PG(2, q), $q = p^h$, p prime, $h \ge 1$, with |B| = tq + t + c, c + t < (q + 3)/2, intersects every line in t (mod p) points.

Proof:

- Absolutely irreducible component H(U, V) of $F_0(U, V) / \prod_{j=1}^{t-1} (V + y_j)$, with deg(H) = s.
- $\exists i$ for which $H(U, V) \not| F_i(U, V)$.

THEOREM

(Proof, continued)

• If $H'_U \neq 0$, then *H* has at least

$$(q+1-t)s-s(s-1)$$

 \mathbb{F}_q -rational points (Blokhuis, Pellikaan, Szőnyi).

• These points all belong to F_i, and Bézout's theorem gives

$$(q+1-t)s-s(s-1)\leq s(c+t-1).$$

Gives inequality

$$c+t+(t+s)\geq q+3,$$

and as $s \leq c$,

$$c+t \geq (q+3)/2.$$

 Galois geometries
 Linear blocking set

 Blocking sets
 Multiple blocking sets and algebraic curves Characterization result

THEOREM

- If c + t < (q + 3)/2, then $H'_U \equiv 0$ for any component H.
- All lines intersect *B* in *t* (mod *p*) points.

Theorem

t-Fold blocking set B in PG(2, q), $q = p^h$, p prime, $h \ge 1$, with |B| = tq + t + c, c + t < (q + 3)/2, intersects every line in t (mod p) points.

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

CHARACTERIZATION RESULT

Let *B* be minimal *t*-fold blocking set of PG(2, p^{6m}) of size t(q+1) + c, with $2 \le t < q^{1/4}/4$, and $c < p^{4m}\sqrt{p}/2$.

Lemma

Point of B has exponent 4m, 3m or 2m. Moreover, when e = 3m, then this point defines dual Baer subline of lines all containing at least $p^{3m} + t$ points of B.

Linear blocking set in $\mathsf{PG}(2,q)$ Multiple blocking sets in $\mathsf{PG}(2,q)$ Multiple blocking sets and algebraic curves Characterization result

RÉDEI POLYNOMIAL

THEOREM (BLOKHUIS, STORME, SZŐNYI)

(1)
$$e = n$$
 and $k = 0$;

(2)
$$e \ge 2n/3$$
 and $k \ge p^e$;

(3)
$$2n/3 > e > n/2$$
 and $k \ge p^{n-e/2} - (3/2)p^{n-e}$;

(4)
$$e = n/2$$
 and $k = p^e$ and $f(X) = aTr(bX + c) + d$ or
 $f(X) = aNorm(bX + c) + d$ for suitable constants a, b, c, d .

(5)
$$e = n/2$$
 and $k \ge p^e \left[\frac{1}{4} + \sqrt{(p^e + 1)/2}\right]$;

(6)
$$n/2 > e > n/3$$
 and $k \ge p^{n/2+e/2} - p^{n-e} - p^e/2$, or if $3e = n + 1$ and $p \le 3$, then $k \ge p^e(p^e + 1)/2$;

(7)
$$n/3 \ge e > 0$$
 and $k \ge p^e \lceil (p^{n-e} + 1)/(p^e + 1) \rceil$;

(8)
$$e = 0$$
 and $k \ge (q + 1)/2$;

(9)
$$e = 0, k = 1$$
 and $f(X) = a(X^q - X)$

DEFINITION

Line containing at least $p^{4m} + t$ points of *B* is called *very long*, while line meeting *B* in at least $p^{3m} + t$ points is called *long*.

LEMMA

Dual Baer subline of long lines through point of exponent 3m is unique.

DEFINITION

If *P* is point of *t*-fold blocking set *B* of exponent 3m defining dual Baer subline of long lines, and ℓ is one of the lines of this dual Baer subline, then we call *P* special point of ℓ .

LEMMA

If line ℓ contains 2t + 1 special points, Baer subplane contained in B.

 Galois geometries
 Linear blocking set

 Blocking sets
 Multiple blocking sets in PG(2, q)

 Multiple blocking sets and algebraic curves
 Characterization result

Leo Storme P

Polynomial method in Galois geometries

Galois geometries Blocking sets	Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result
Blocking sets	Multiple blocking sets and algebraic curves
	Characterization result

Lemma

If there is Baer subplane S contained in B, then $B \setminus S$ is minimal (t - 1)-fold blocking set.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

From now on, line ℓ contains at most 2*t* special points.

Lemma

B has at most c points of exponent 3m.

Lemma

There are at most 2t points of exponent 4m.

Linear blocking set Multiple blocking sets in PG(2, q) Multiple blocking sets and algebraic curves Characterization result

CHARACTERIZATION RESULT

THEOREM (BLOKHUIS, LOVÁSZ, STORME, SZŐNYI)

t-Fold blocking set B in PG(2, p^{6m}), $2 \le t < p^{3m/2}/4$, with $|B| < tp^{6m} + p^{4m}\sqrt{p}/2 + t$, not containing Baer subplane, has size $|B| \ge tp^{6m} + tp^{4m} - O(p^{2m})$.

Thank you very much for your attention!

• • = • • = •